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We discuss the role of the dynamic Oseen tensor in setting the time scales involved in the
scaling of the time-dependent self-diffusion coefficient measured by diffusing wave spectroscopy. We
elucidate the paradoxical short time behavior for which scaling is observed and clarify the possible

discrepancies between theory and experiments.
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Time-dependent hydrodynamic interactions play a cru-
cial role in the dynamics of colloidal particles at the time
scales of the decay of the velocity of the particles. This
has been most evidenced by diffusion wave spectroscopy
(DWS) which allows one to explore amazingly short time
and space scales. Since its advent [1] this technique has
triggered a number of experimental [2], theoretical [3,4],
and computer simulation studies [5,6] of the self-diffusion
of colloidal suspensions at different concentrations at the
short time scales where the velocity of the colloidal par-
ticles has still not relaxed and the particles do not follow
a classical Brownian motion.

A scaling property of the time-dependent self-diffusion
coefficient D(t) at different concentrations has been
found experimentally [2], and confirmed by a computer
simulation [5]. This scaling suggests that the colloidal
particles move as if they were alone but in an effective
medium with the suspension viscosity. However, the raw
D(t) curves for different volume fractions separate from
each other at times much shorter than the time required
for the vorticity to travel the typical distance between
particles. The scaling is satisfied at very short times also.
This has been a puzzling question [2,5] because it is ar-
gued that there is not enough time for the hydrodynamic
interactions to have been established at these short time
scales.

The purpose of this paper is to study in detail the prop-
agation of time-dependent hydrodynamic interactions by
looking at the form of the dynamic Oseen tensor in real
space [7]. We emphasize that hydrodynamic interac-
tions in incompressible fluids are established instanta-
neously and that the dominant effects come from very
short times. Although there is a time scale associated
with the diffusive propagation of vorticity, we show that
it plays a secondary role. Therefore, there is no paradox
about the fact that particles influence each other at very
short times, thus modifiying their diffusion properties.

The time-dependent self-diffusion coefficient D(t) is
defined as

*Electronic address: pep.espanol
tElectronic address: miguel.rubio
Electronic address: izuniga@uned.es

1063-651X/95/51(1)/803(4)/$06.00 51

D(t) = %(AR%:)):/O o(¢at', (1)
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where (ARZ(t)) is the mean-square displacement and
C(t) = 3(u-u(t)) is the velocity autocorrelation func-
tion. D(t) has been measured for suspensions of hard
spheres (monodisperse polystyrene latex spheres of ra-
dius @ = 1.53 pm and a = 3.09 pum in water) [2]. At the
smallest volume fraction (¢ = 0.021), D(t) is accurately
described by the hydrodynamic theory of Brownian mo-
tion [8,9] instead of the classical exponential Langevin re-
sult D(t) = Do(1 —exp{—t/7B}), where T = m/(67na),
Dy = kgT/(6nna). This is the Stokes-Einstein relation
for the diffusion coefficient of a single particle, n being
the shear viscosity of the solvent and a the radius of the
spherical particles in suspension. The hydrodynamic the-
ory of Brownian motion for a single particle predicts [10]

3 1
D(t) = Do{l + G_sn)i/ Iza exp{aiT}erfc(a,,,'rl/z)
- exp{az_'r}erfc(a__'rl/z)] }, (2)
a_
where 7 = t/7, is a scaled time and 7, = a%p/n is a

typical time required for the vorticity to diffuse a dis-
tance equal to a particle radius. Also, erfc(z) is the com-
plex compliment of the error function, ay = 3[3 £ (5 —
8%)/2]/(2 4 4%) and ¥ = pp/p, where pp and p are the
densities of the colloidal particle and the solvent, respec-
tively.

At higher volume fractions there are substantial devi-
ations from the single particle result Eq. (2) [2]. Never-
theless, a striking scaling property is observed by which
D(t) at a finite volume fraction can be fitted by the ¢ = 0
result (2) by substituting 7,, and Dy by volume fraction
dependent quantities 7(¢) and D(¢). In this way, the
scaling relationship is D(t) = D4(¢)d(t/7(¢)) where d(z)
can be found from (2) and satisfies lim,_,oc d(z) = 1.
Several scaling scenarios have been considered [2]. A
particularly interesting one is obtained when the theoret-
ically predicted [11] short-time self-diffusion coefficient
Dy(¢) = Do[l — 1.83¢] is used. Then, the time scale
is given quite accurately by 7(¢) = a2p/n>(¢), where
n°°(¢) is the suspension high-frequency shear viscosity
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as calculated by Beenakker [12].

This scaling strongly suggests that the dynamics of a
given particle in a concentrated suspension is the same as
if the particle would move alone in an effective medium
with viscosity equal to the suspension viscosity. How-
ever, this appealing picture is apparently paradoxical in
two related aspects. First, the deviation of the time-
dependent self-diffusion coefficient in a concentrated sus-
pension from the dilute result occurs at times much
shorter than 7,, the time required for the vorticity to
diffuse the average interparticle distance (which in the
experiments is of the order of two to six particle radius
depending on the volume fraction). Second, the observed
scaling extends to times much shorter than ,,.

The dynamic Oseen tensor is the Green’s function of
the linearized Navier-Stokes equations and contains all
the information about the time scales involved in the
hydrodynamic interactions. The incompressibility and
Navier-Stokes equations are

V. v(r,t)=0

pagv(r,t) = —Vp(l‘,t) + ﬂvzv(l‘,t) + F(l‘,t), (3)
where v(r,t) is the velocity field, p(r,t) is the pressure
field, and F(r,t) is a force density field that includes

external forces like gravity and induced forces due to
boundary conditions. The solution of (3) is

o) B 8)
p ,

v(r,t) = vo(r,t) + At dt'/d:"r'P(r -1 t—
(4)

where the dynamical Oseen tensor is defined by

Pr-r,t—t)= / (%W—l)% exp{—v(t —t')k>
+ik - (r —1')} [1 - 1;—12(] (5)

and vo(r,t) is the unperturbed velocity field. The explicit
form of the dynamical Oseen tensor in (5) is

P(r,t) = p(r,t)1 — g(r, t)i—z, (6)
where
p(r,t) = (1 + 27”}) f(rt) — Qg,

a(r,t) = (1 + %”;) F(rt) — 39_53&

3
f(r,t) = / %&‘ exp{—vtk? + ik - r}

_ 1 _r
T (4mwt)3/2 P\ T [
d3k 1 .
g(T‘, t) = / (Er_)gﬁ exp{—l/tk2 + ik - l‘}

and ®(z) is the error function.
It is illustrative to consider two particular temporal

dependences of the external force. If an external station-
ary local force of the form F = F(d(r) is applied at the
origin, then the velocity field is also stationary and given
by

1 oo
v(r) = ;/0 P(r,t)dtFo = T(r)Fo. (8)

The static Oseen tensor T(r), which is the time integral
of the dynamical Oseen tensor, has the well-known ex-
plicit form

T(r) = %/é—jr%exp{ik . r}# [1 — %—125]
- 87r177r [1 + :—Z:l ' ©)

On the other hand, an impulsive local force of the form
F = Fi(r)é(¢) applied on a fluid originally at rest pro-
duces a velocity field per unit force of the form v(r,t) =
P(r,t)Fo/p. This shows that the dynamic Oseen tensor
describes the effects of a disturbance local in space and
time. If the impulsive force is in the direction of the z
axis, F = F4(r)é(t)e, then the velocity field per unit
force under an impulsive force is

v(r,t)
F/p

where 0 is the angle between the position vector r and
the z axis.

In the case of a colloidal suspension, we can interpret
the force F(r,t) in Eq. (3) as the induced force necessary
to produce the same effects on the flow field as those
produced by the boundary conditions on the colloidal
particles [7,9]. This force F(r,t) is quite localized in space
and time because, due to Brownian motion, it provides
essentially instantaneous kicks to the solvent. Therefore,
Eq. (10) is a good approximation to the velocity field
around a colloidal particle once a Brownian fluctuation
has occurred.

The most relevant feature of the velocity field in Eq.
(10) is that it becomes instantaneously (at t = 0%) differ-
ent from zero in all points. The functions f,g,p,q have
the following nonzero values at the initial time f(r,0") =
§3(r), g(r,0%) = 1/4mr, p(r,0%) = §3(r) — 1/4nr3, and
q(r,0%) = §3(r) — 3/4nr3. This infinite velocity of prop-
agation is obviously an artifact of the assumed incom-
pressibility of the fluid. In a more elaborate compress-
ible theory one expects that there is a delay of order r/ec,
where c is the (finite) speed of sound, from the moment
that an initial kick at the origin is produced until the
velocity field at a point » reaches its maximum value of
the order 1/(4mr3®). However, the scaling observed in
the DWS experiments is not due to compressibility ef-
fects. A simple comparison of the sound traversal time
defined as 7. = R/c where R is a typical interparticle
distance (~ 1 pm) and c is the speed of sound in wa-
ter (~ 1500 m/s) shows that 7. ~ 10™° s which is much
smaller than the smallest time scales probed in the ex-
periments (~ 1077 s). Therefore, an incompressible the-
ory should be perfectly adequate to describe the hydro-

r
—

= p(r,t)e, — q(r,t)(cos 9)T (10)
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dynamic interactions between particles in these experi-
ments.

At later times the velocity field induced in all space
relaxes in the form of a vortex ring. This is clearly seen
in Fig. 1 [the velocity field in Eq. (10) has axial sym-
metry]. Let us remark that this vortex ring generation
is the fundamental mode of reaction of a fluid under an
external force, that is, the vortex ring is a representation
of the Green’s function of the problem. As time pro-
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FIG. 1. Section in the plane zz of the vortex ring at two
different times (a) ¢ = 0.006 and (b) ¢ = 0.03, respectively.
In each snapshot the magnitude of the velocity field is scaled
to the maximum value of the velocity (which occur near the
origin). It is clear that once the initial vortex is stablished
(in short sonic time scales not captured by an incompressible
theory) there is a relaxation of the velocity field by diffussion
of the vorticity.
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FIG. 2. The velocity field v(r,t) (per unit perturbing
force) on the points ahead in the axis containing the per-
turbing force. In descending order » = 0.1,...,0.9,1 and the
units are such that v = 1.

ceeds, the vortex ring expands. In order to have a better
quantitative idea we plot (in Fig. 2) the z component of
the velocity field v (r,t) at different distances ahead of
the origin in the axis of the direction of the perturbing
force, as a function of time. In this axis, the direction of
the velocity field is parallel to the perturbing force, by
symmetry requirements. We observe that the maximum
velocity occurs at the initial time. In Fig. 3 we plot the
velocity field v, (r,t) at different distances in the plane
containing the origin and normal to the direction of the
perturbing force, as a function of time. Also, the veloc-
ity in this plane is necessarily parallel to the force, by
symmetry arguments. At very short times the velocity
at any point different from the origin is negative, i.e.,
opposite to the direction of the force. This is because
an instantaneous vortex ring has been formed. As time
proceeds, the circumference of points where the veloc-
ity field is zero moves apart from the origin. Because of
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FIG. 3. The velocity field v, (r,t) (per unit perturbing
force) on the points of the plane containing the origin and
perpendicular to the direction of the perturbing force. In de-
scending order, » = 0.1,...,0.9,1. We choose units such that
v = 1. The maximum of p(r,t) occurs for tmaes = 7-2/41/ and
at this time the value is f(7,tmaz) r73. At long times the

decay is proportional to t=3/2,
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vy (r,t) = p(r,t) = ¥(r?/vt)/r3, the radius of the vortex
ring occurs at a constant value of r2?/vt, growing diffu-
sively. At long times, the velocity field in the normal
plane at a given point will have a positive velocity be-
cause the vortex ring will have already drifted beyond
that point. Eventually the velocity field will decay as a
power law t~3/2. This decay is the ultimate cause for the
long-time tails in the velocity autocorrelation function of
a particle [13].

In conclusion, there is no paradox about the scaling
of the time-dependent self-diffusion coefficient at short
times because the hydrodynamic interactions are estab-
lished instantaneously and then decay by the diffusion
of the vorticity. In addition, the most important effects
occur at t = 0 when the overall magnitude of the velocity
field is larger.

The above discussion does not offer any explanation
about the cause of the scaling. We are aware of only
two theoretical approaches to the study of the time-
dependent self-diffusion coefficient at short times. Mil-
ner and Liu [4] use a method of reflections and assume
pair additivity of hydrodynamic interactions in order
to compute the mobility and, through the fluctuation-
dissipation theorem, the time-dependent self-diffusion co-
efficient. They find a form of scaling at long times. How-
ever, because a low-frequency expansion is made, their
approximation is limited to long times. Then, from their
approach it is not possible to assess whether pair addi-
tivity is sufficient to give scaling at short times.

On the other hand, Clercx and Schram [3] make use of
a general numerical scheme for calculating the mobility
matrix. For the case of two spheres and assuming pair ad-
ditivity of the hydrodynamic interactions, they calculate
the time-dependent self-diffusion coefficients for different
values of the density ratio ¥ and different volume frac-

tions ¢. Pair additivity should be a good approximation
for low enough ¢. Unfortunately, the scaling properties
of the curves have not been analyzed. At the highest
volume fractions considered (¢ ~ 0.3), and for Brownian
particle densities larger than the solvent density, there
is a maximum in D(t) which is not present at lower ¢
(see Fig. 3 in Ref. [3]). This precludes scaling at these
values of the volume fractions. The question is whether
pair additivity is valid in these cases. The comparison
with three-body calculations is essential in order to as-
sess the range of ¢ for which the two-body results are
correct. It is suggested in Ref. [3] that for all the con-
centrations considered (¢ < 0.3) the assumption of pair
additivity is justified from the fact that the asymptotic
values of D(t) are given correctly by the well-known re-
sult D(¢) = Dg[1 — 1.83¢] (which is obtained under the
assumption of pair additivity). However, one should be
cautious about extrapolating the validity of pair approx-
imation at long times to short times. It may well hap-
pen that during the time-dependent regime, many-body
interactions are more important than in the asymptotic
long-time regime. This would reduce the range of volume
fractions for which the pair approximation is valid. An-
other possible approach to the same problem is through
the numerical scheme put forward by Ladd for the com-
putation of many-body interactions [14], by considering
short times.
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